Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4763, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362918

RESUMO

The comparison of gene regulatory networks between diseased versus healthy individuals or between two different treatments is an important scientific problem. Here, we propose sc-compReg as a method for the comparative analysis of gene expression regulatory networks between two conditions using single cell gene expression (scRNA-seq) and single cell chromatin accessibility data (scATAC-seq). Our software, sc-compReg, can be used as a stand-alone package that provides joint clustering and embedding of the cells from both scRNA-seq and scATAC-seq, and the construction of differential regulatory networks across two conditions. We apply the method to compare the gene regulatory networks of an individual with chronic lymphocytic leukemia (CLL) versus a healthy control. The analysis reveals a tumor-specific B cell subpopulation in the CLL patient and identifies TOX2 as a potential regulator of this subpopulation.


Assuntos
Redes Reguladoras de Genes , Leucemia Linfocítica Crônica de Células B/genética , Análise de Célula Única/métodos , Linfócitos B , Cromatina , Regulação Neoplásica da Expressão Gênica , Proteínas HMGB , Humanos , RNA Citoplasmático Pequeno , Software
2.
Nat Biotechnol ; 37(8): 925-936, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31375813

RESUMO

Understanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here, we assess the performance of a massively parallel droplet-based method for mapping transposase-accessible chromatin in single cells using sequencing (scATAC-seq). We apply scATAC-seq to obtain chromatin profiles of more than 200,000 single cells in human blood and basal cell carcinoma. In blood, application of scATAC-seq enables marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity and reconstruction of trajectories of cellular differentiation. In basal cell carcinoma, application of scATAC-seq reveals regulatory networks in malignant, stromal and immune cells in the tumor microenvironment. Analysis of scATAC-seq profiles from serial tumor biopsies before and after programmed cell death protein 1 blockade identifies chromatin regulators of therapy-responsive T cell subsets and reveals a shared regulatory program that governs intratumoral CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that scATAC-seq will enable the unbiased discovery of gene regulatory factors across diverse biological systems.


Assuntos
Células da Medula Óssea/metabolismo , Cromatina/química , Análise de Célula Única/métodos , Linfócitos T/metabolismo , Linhagem Celular , Simulação por Computador , Regulação da Expressão Gênica , Hematopoese , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucócitos Mononucleares , Fatores de Transcrição/metabolismo
3.
Genome Res ; 29(4): 635-645, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30894395

RESUMO

Large-scale population analyses coupled with advances in technology have demonstrated that the human genome is more diverse than originally thought. To date, this diversity has largely been uncovered using short-read whole-genome sequencing. However, these short-read approaches fail to give a complete picture of a genome. They struggle to identify structural events, cannot access repetitive regions, and fail to resolve the human genome into haplotypes. Here, we describe an approach that retains long range information while maintaining the advantages of short reads. Starting from ∼1 ng of high molecular weight DNA, we produce barcoded short-read libraries. Novel informatic approaches allow for the barcoded short reads to be associated with their original long molecules producing a novel data type known as "Linked-Reads". This approach allows for simultaneous detection of small and large variants from a single library. In this manuscript, we show the advantages of Linked-Reads over standard short-read approaches for reference-based analysis. Linked-Reads allow mapping to 38 Mb of sequence not accessible to short reads, adding sequence in 423 difficult-to-sequence genes including disease-relevant genes STRC, SMN1, and SMN2 Both Linked-Read whole-genome and whole-exome sequencing identify complex structural variations, including balanced events and single exon deletions and duplications. Further, Linked-Reads extend the region of high-confidence calls by 68.9 Mb. The data presented here show that Linked-Reads provide a scalable approach for comprehensive genome analysis that is not possible using short reads alone.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Polimorfismo Genético , Sequenciamento Completo do Genoma/métodos , Linhagem Celular , Genoma Humano , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Membrana/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
4.
Biophys J ; 115(6): 1103-1115, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30201266

RESUMO

In modern cancer treatment, there is significant interest in studying the use of drug molecules either directly injected into the bloodstream or delivered by nanoparticle (NP) carriers of various shapes and sizes. During treatment, these carriers may extravasate through pores in the tumor vasculature that form during angiogenesis. We provide an analytical, computational, and experimental examination of the extravasation of point particles (e.g., drug molecules) and finite-sized spheroidal particles. We study the advection-diffusion process in a model microvasculature, consisting of a shear flow over and a pressure-driven suction flow into a circular pore in a flat surface. For point particles, we provide an analytical formula [Formula: see text] for the dimensionless Sherwood number S, i.e., the extravasation rate, in terms of the pore entry resistance (Damköhler number κ), the shear rate (Péclet number P), and the suction flow rate (suction strength Q). Brownian dynamics (BD) simulations verify this result, and our simulations are then extended to include finite-sized NPs, in which no analytical solutions are available. BD simulations indicate that particles of different geometries have drastically different extravasation rates in different flow conditions. In general, extreme aspect ratio particles provide a greater flux through the pore because of favorable alignment with streamlines entering the pore and less hindered interaction with the pore. We validate the BD simulations by measuring the in vitro transport of both bacteriophage MS2 (a spherical NP) and free dye (a model drug molecule) across a porous membrane. Despite their vastly different sizes, BD predicts S = 8.53 E-4 and S = 27.6 E-4, and our experiments agree favorably, with Sexp=10.6 E-4± 1.75 E-4 and Sexp=16.3 E-4 ± 3.09 E-4, for MS2 and free dye, respectively, thus demonstrating the practical utility of our simulation framework.


Assuntos
Vasos Sanguíneos/metabolismo , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Nanopartículas , Tamanho da Partícula , Porosidade
6.
Hortic Res ; 5: 4, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423234

RESUMO

Linked-Read sequencing technology has recently been employed successfully for de novo assembly of human genomes, however, the utility of this technology for complex plant genomes is unproven. We evaluated the technology for this purpose by sequencing the 3.5-gigabase (Gb) diploid pepper (Capsicum annuum) genome with a single Linked-Read library. Plant genomes, including pepper, are characterized by long, highly similar repetitive sequences. Accordingly, significant effort is used to ensure that the sequenced plant is highly homozygous and the resulting assembly is a haploid consensus. With a phased assembly approach, we targeted a heterozygous F1 derived from a wide cross to assess the ability to derive both haplotypes and characterize a pungency gene with a large insertion/deletion. The Supernova software generated a highly ordered, more contiguous sequence assembly than all currently available C. annuum reference genomes. Over 83% of the final assembly was anchored and oriented using four publicly available de novo linkage maps. A comparison of the annotation of conserved eukaryotic genes indicated the completeness of assembly. The validity of the phased assembly is further demonstrated with the complete recovery of both 2.5-Kb insertion/deletion haplotypes of the PUN1 locus in the F1 sample that represents pungent and nonpungent peppers, as well as nearly full recovery of the BUSCO2 gene set within each of the two haplotypes. The most contiguous pepper genome assembly to date has been generated which demonstrates that Linked-Read library technology provides a tool to de novo assemble complex highly repetitive heterozygous plant genomes. This technology can provide an opportunity to cost-effectively develop high-quality genome assemblies for other complex plants and compare structural and gene differences through accurate haplotype reconstruction.

7.
Genome Res ; 27(5): 757-767, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381613

RESUMO

Determining the genome sequence of an organism is challenging, yet fundamental to understanding its biology. Over the past decade, thousands of human genomes have been sequenced, contributing deeply to biomedical research. In the vast majority of cases, these have been analyzed by aligning sequence reads to a single reference genome, biasing the resulting analyses, and in general, failing to capture sequences novel to a given genome. Some de novo assemblies have been constructed free of reference bias, but nearly all were constructed by merging homologous loci into single "consensus" sequences, generally absent from nature. These assemblies do not correctly represent the diploid biology of an individual. In exactly two cases, true diploid de novo assemblies have been made, at great expense. One was generated using Sanger sequencing, and one using thousands of clone pools. Here, we demonstrate a straightforward and low-cost method for creating true diploid de novo assemblies. We make a single library from ∼1 ng of high molecular weight DNA, using the 10x Genomics microfluidic platform to partition the genome. We applied this technique to seven human samples, generating low-cost HiSeq X data, then assembled these using a new "pushbutton" algorithm, Supernova. Each computation took 2 d on a single server. Each yielded contigs longer than 100 kb, phase blocks longer than 2.5 Mb, and scaffolds longer than 15 Mb. Our method provides a scalable capability for determining the actual diploid genome sequence in a sample, opening the door to new approaches in genomic biology and medicine.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Diploide , Análise de Sequência de DNA/métodos , Genoma Humano , Biblioteca Genômica , Humanos , Microfluídica/métodos , Software
8.
J Eng Math ; 84(1): 155-171, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24563548

RESUMO

Motivated by recent studies on tumor treatments using the drug delivery of nanoparticles, we provide a singular perturbation theory and perform Brownian dynamics simulations to quantify the extravasation rate of Brownian particles in a shear flow over a circular pore with a lumped mass transfer resistance. The analytic theory we present is an expansion in the limit of a vanishing Péclet number (P), which is the ratio of convective fluxes to diffusive fluxes on the length scale of the pore. We state the concentration of particles near the pore and the extravasation rate (Sherwood number) to O(P1/2). This model improves upon previous studies because the results are valid for all values of the particle mass transfer coefficient across the pore, as modeled by the Damköhler number (κ), which is the ratio of the reaction rate to the diffusive mass transfer rate at the boundary. Previous studies focused on the adsorption-dominated regime (i.e., κ → ∞). Specifically, our work provides a theoretical basis and an interpolation-based approximate method for calculating the Sherwood number (a measure of the extravasation rate) for the case of finite resistance [κ ~ O(1)] at small Péclet numbers, which are physiologically important in the extravasation of nanoparticles. We compare the predictions of our theory and an approximate method to Brownian dynamics simulations with reflection-reaction boundary conditions as modeled by κ. They are found to agree well at small P and for the κ ≪ 1 and κ ≫ 1 asymptotic limits representing the diffusion-dominated and adsorption-dominated regimes, respectively. Although this model neglects the finite size effects of the particles, it provides an important first step toward understanding the physics of extravasation in the tumor vasculature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...